Changes

HullFeatures

26 bytes added, 16:20, 13 February 2016
m
Righting Moment
When a boat is upright, the CB is above the CG, on the centreline. As a boat heels, the CB moves to the side in the direction of the heel. The horizontal distance between CG and CB is the righting arm (GZ). Heeling changes the underwater shape of the boat, and begins to move it toward a tipping point. As the edge of the freeboard meets the water, the outboard shift of the CB reduces and eventually changes direction as the boat heels further. This is caused by the change in the underwater hull shape. Obviously as the CB changes direction, the GZ is reduced.
=== Righting Moment ===
 
Righting Moment = GZ*D
 
The righting moment (restoring force) is GZ multiplied by displacement (D). The longer the righting arm and/or the heavier the displacement, the greater the restoring forces.
As the boat exceeds its range of initial stability, and enters the zone of ultimate stability, the restoring force begins to decrease. This happens due to the changing shape of the immersed hull. As it continues to heel, the CB shifts inboard and the righting moment becomes less and less just when the boat needs more and more to restore it to upright. The boat becomes increasingly unstable. When the CB moves to the opposite side of the CG, the righting moment becomes an upsetting moment. When the boat reaches its Angle of Vanishing Stability it capsizes.
 
=== Static Stability ===
Static stability determines the angle of heel under constant wind or wave conditions. Factors that increase static stability are heavy displacement, low centre of gravity, and a centre of buoyancy that shifts outboard quickly when the boat heels. Boats with wider beams exhibit more static stability (stiffness) and less dynamic stability.